metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yun-Long Fu,^a Jia-Lin Ren^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.013 Å R factor = 0.074 wR factor = 0.195 Data-to-parameter ratio = 11.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[bis[aqua(1,10-phenanthroline)cobalt(II)]-μ₄-1,2,4,5-benzenetetracarboxylato]

The title compound, $[Co_2(C_{10}H_2O_8)(C_{12}H_8N_2)_2(H_2O)_2]_n$, adopts a linear chain structure in which the tetra-anionic ligand, which lies on a special position of $\overline{1}$ site symmetry, uses two O atoms of one carboxylate group to bind to one Co atom and the O atom of the carboxyl group at the *ortho* position to bind to another Co atom. Each Co atom is also chelated by the *N*-heterocycle, and its sixth coordination site is occupied by a water molecule.

Comment

This study continues a recent study on cobalt(II) pyromellitate complexes (Fu *et al.*, 2004) and follows the report on $[(C_{10}H_2O_8)(C_{12}H_8N_2)_2Cu_2\cdot 2H_2O]_n$ (Zhang *et al.*, 2003). Unlike the copper complex, which has the metal atom in a tetrahedral geometry, the title cobalt compound, (I), although having the same chemical formula with Co replacing Cu (Fig. 1), has a different architecture. The unique metal atom is chelated by the *N*-heterocycle and by one carboxyl $-CO_2$ arm of the 1,2,4,5-benzenetetracarboxylate (pyromellitate) tetra-anion, and is coordinated by the water molecule. It is also bonded to one O atom of a non-equivalent carboxyl unit of an adjacent tetra-anion, this unit displaying unambiguous carbon–oxygen single and double bonds. The double-bond O atom engages in hydrogen bonding with the water molecule (Fig. 2).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 23 September 2004 Accepted 21 October 2004 Online 30 October 2004

Figure 1

ORTEPII (Johnson, 1976) plot of a portion of $[Co_2(C_{10}H_2O_8)(C_{12}H_8N_2)_2(H_2O)_2]_n$. Displacement ellipsoids are drawn at the 50% probability level, and H atoms are drawn as spheres of arbitrary radii. [Symmetry code: (i) = 1 + x, y, z.]

Figure 2

Schematic representation of the chain structure; the coordination geometry around the Co atom is depicted as an octahedron.

Only a few *N*-heterocycle adducts of cobalt(II) pyromellitate have been reported; among these are an imidazole adduct that was synthesized in aqueous solution (Wang *et al.*, 2000), an *N*-methylimidazole adduct that was synthesized hydrothermally (Cheng *et al.*, 2002) and a DMF adduct that was synthesized solvothermally (Fu *et al.*, 2004).

Experimental

Cobalt(II) nitrate hexahydrate (0.28 g, 1.0 mmol), pyromellitic acid (0.13 g, 0.5 mmol) and 1,10-phenanthroline (0.11 g, 1.0 mmol) were dissolved in *N*,*N*-dimethylformamide (10 ml). The mixture was sealed in a Teflon-lined stainless steel bomb, which was heated at 393 K for 4 d. Orange crystals were obtained when the bomb was cooled slowly to room temperature. Analysis found: C 53.44, H 2.78, N 7.34%; calculated for $C_{34}H_{22}Co_2N_4O_{10}$: C 53.42, H 2.90, N 7.33%.

Crystal data

 $\begin{bmatrix} \text{Co}_2(\text{C}_{10}\text{H}_2\text{O}_8)(\text{C}_{12}\text{H}_8\text{N}_2)_2(\text{H}_2\text{O})_2 \end{bmatrix}$ $M_r = 764.42$ Monoclinic, $P2_1/a$ a = 7.542 (2) Å b = 21.220 (5) Å c = 9.478 (2) Å $\beta = 95.836$ (4)° V = 1509.1 (6) Å³ Z = 2

Data collection

Bruker APEX area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.157, T_{\max} = 0.933$
7206 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.195$ S = 1.082647 reflections 232 parameters H atoms treated by a mixture of independent and constrained refinement $D_x = 1.682 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 759 reflections $\theta = 2.4-19.9^{\circ}$ $\mu = 1.17 \text{ mm}^{-1}$ T = 295 (2) K Bar, orange $0.31 \times 0.09 \times 0.06 \text{ mm}$

2647 independent reflections 1827 reflections with $I > 2\sigma(I)$ $R_{int} = 0.074$ $\theta_{max} = 25.0^{\circ}$ $h = -8 \rightarrow 5$ $k = -22 \rightarrow 25$ $l = -8 \rightarrow 11$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0914P)^2 \\ &+ 1.3411P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 1.32 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Co1-O1	2.231 (5)	Co1-O1w	2.055 (5)
Co1-O2	2.128 (4)	Co1-N1	2.139 (6)
Co1–O3 ⁱ	2.024 (4)	Co1-N2	2.122 (6)
O1 Co1 O2	60.3(2)	$O_2 C_{01} N_2$	166 1 (2)
01 - Co1 - O2 $01 - Co1 - O3^{i}$	161.5(2)	$O_2^2 = Co_1^2 = O_2^2$	85.5 (2)
O1 - Co1 - O1w	86.2 (2)	$O_2 = CO_1 = O_1 w$ $O_3^i = Co_1 = O_1 w$	91.7 (2)
O1-Co1-N1	87.4 (2)	O3 ⁱ -Co1-N1	96.6 (2)
O1-Co1-N2	106.1 (2)	O3 ⁱ -Co1-N2	92.4 (2)
O2-Co1-O3 ⁱ	101.3 (2)	O1w-Co1-N1	170.4 (2)
O2-Co1-N1	97.6 (2)	O1w-Co1-N2	97.0 (2)

Symmetry code: (i) 1 + x, y, z.

metal-organic papers

Table 2

Hydrogen-bonding geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} O1w - H1w1 \cdots O4 \\ O1w - H1w2 \cdots O4^{ii} \end{array} $	0.85 (1)	2.08 (2)	2.916 (7)	167 (6)
	0.85 (1)	1.92 (2)	2.763 (6)	172 (6)

Symmetry code: (ii) $\frac{1}{2} + x, \frac{1}{2} - y, z$.

The quality of the diffraction measurements was not optimal. The water H atoms were located and refined with distance restraints of O-H = 0.85 (1) Å and $H \cdots H = 1.39$ (1) Å, and with $U_{iso}(H) = 1.2U_{eq}(O)$. Other H atoms were placed at calculated positions (C-H = 0.93 Å) and refined in the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$. The final difference Fourier map had a large peak about 1 Å from atom O1 and 2 Å from atom Co1.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.

- Cheng, D.-P., Khan, M. A. & Houser, R. P. (2002). J. Chem. Soc. Dalton Trans. pp. 4555–4560.
- Fu, Y.-L., Ren, J.-L. & Ng, S. W. (2004). Acta Cryst. E60, m1400-m1402.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, S., Hu, M.-L., Yuan, J.-X., Cheng, Y.-Q., Lin, J.-J. & Huang, Z.-Y. (2000). Chin. J. Chem. 18, 546–550.
- Zhang, L.-J., Xu, J.-Q., Shi, Z., Zhao, X.-L. & Wang, T.-G. (2003). J. Solid State Chem. 32, 32–39.